

GNU Radio Tutorials

Labs 1 – 5

Balint Seeber
Ettus Research

Version 1.0 (18th April 2014)

Comments & suggetions welcome:
balint@ettus.com
@spenchdotnet

mailto:balint@ettus.com

Lab 1

● Open GNU Radio Companion:
– Open a Terminal/Console/Command Prompt

– Run 'gnuradio-companion'

Lab 1

Log window – keep an eye on this, as well as your terminal!

Block list –
Press
CTRL+F to
search for a
name

Canvas (the flowgraph
construction area)

Drag blocks from
the Block list
onto the canvas.

Connect ports by clicking on the chosen port of one
block, and then click on the port of the other block.
You can delete connections by clicking on the
connection's line and pressing the Delete key.

Lab 1

Create a sine wave & inspect the generated
samples with a (time-domain) Scope Sink

Lab 1

'Options' block is used
to set global parameters

(double click)

Lab 1

Name of generated Python file

Title of main GUI window, or name of Hierarchical block

GRC canvas size

Type of code to generate (see next)

How to start & stop the flowgraph

If code is run as 'root' (e.g. with 'sudo')
ask OS kernel to prioritise this process

Advanced: limit the number of samples output
from each iteration of every block's work function

Lab 1

GUI app using WX toolkit
(use WX GUI blocks)

GUI app using Qt toolkit
(use Qt GUI blocks)

Command-line app without GUI
(text-based, run in a console)

Create a Hierarchical block
that will appear in the block list
(a reusable component, not an app
– use Pad Source/Sink blocks to
expose ports, and Parameter blocks
to expose configuration variables)

Lab 1

Automatically start flowgraph

Do not automatically start flowgraph

Lab 1

Will automatically exit if/when done

Pressing ENTER will exit

Lab 1

Variable: a block that contains an arbitrary Python
expression.

You can refer to it in another block by its ID.

'samp_rate' is always added
by default in a new flowgraph

Lab 1

(double click)

ID: (Python) variable name
Value: arbitrary Python expression, e.g.

32000 (the default): an integer

32e6: 32000.0 (floating-point number)

int(32e6): 32000 (integer cast of floating-
point number)

Lab 1

(double click)

Another example of a simple arbitrary
Python expression.

Hover the cursor over any parameter
field and the tooltip will show you the
expression's evaluated result
(here 5 + 6 = 11)

Note: arbitrary expressions can only be
written into fields that have a white
background ('raw' fields).

'my_var' is just for show here
(it doesn't actually do anything
useful in this flowgraph).

Lab 1

GUI widget to control
the generated frequency

GUI widget to plot samples
in the time-domain

Will throttle the rate at which
samples pass through this block
(thus setting the rate at which
samples pass through the whole
flow graph).

Synthesises a sine wave

Lab 1

Type of sample (sets port colour)

Any processing block's
'Sample Rate' parameter is
used for DSP calculation, not
for controlling the rate at which
samples are produced.
This is distinct from a hardware
(or Throttle) block where it is
used to control sample flow.

Type of signal

Frequency (here it's linked to the slider

Phase offset

An underline indicates changing
the parameter via any
dependent variable will cause
the block to trigger an internal
callback and update its state
(i.e. perform a real-time
parameter change)

Sample Rate (DSP)

● If calculating a sine wave where a given
frequency in Hertz is desired, you actually need
to know the sample rate too. This is because
the mathematical representation requires both
values to calculate the individual sample
amplitude at any specific point in time.

● The actual sample rate value used can be
anything. It just so happens you'll usually use
the same value as in the rest of your flowgraph
so that everything will be consistent (operate in
the same sample rate domain).

Sample Rate (DSP)

● Think of it as being used to calculate the
discrete step size from one sample to the next
within a DSP operation (e.g. the time step when
calculating the amplitude of the next sample in
the sine wave generator)

Sample Rate (Hardware)

● Distinct from mathematical (DSP) calculation,
sample rate also refers to the rate at which
samples pass through the flowgraph.

● If there is no rate control, hardware clock or
throttling mechanism, the samples will be
generated, pass through the flowgraph and be
consumed as fast as possible (i.e. the flowgraph
will be CPU bound).

● This is desirable if you want to perform some
fixed DSP on stored data as quickly as possible
(e.g. read from a file, resample and write it back).

Sample Rate (Hardware)

● Only a block that represents some underlying
hardware with its own clock (e.g. USRP, sound
card), or the Throttle Block, will use 'Sample
Rate' to set that hardware clock, and therefore
have the effect of applying rate control to the
samples in the flowgraph.

● A Throttle Block will simply apply host-based
timing (against the 'wall clock') to control the
rate of the samples it produces (i.e. samples
that it makes available on its outputs to
downstream blocks).

Sample Rate (Hardware)

● A hardware Sink block will consume samples at
a fixed rate (relative to the wall clock)

● The Throttle Block, or a hardware Sink block,
will apply 'back pressure' to the upstream
blocks (the rate of work of the upstream blocks
will be limited by the throttling effect of this rate-
controlling block)

● A hardware Source block will produce samples
at a fixed rate (relative to the wall clock)

Sample Rate (Hardware)

● In general, there should only ever be one block
in a flowgraph that has the ability to throttle
sample flow.

● Otherwise you need to be very careful with
multiple, unsynchronised clock sources: they
will eventually go out of sync and cause
overflows/underruns as their
production/consumption rates will differ.
– This is the 'two clock' problem (discussed later)

– Work arounds: allow non-blocking I/O, and/or tweak
resampling rates to account for the clock offsets

Lab 1
A port's colour indicates the type of samples flowing through
the port. The colours also apply to block parameter fields.

Tip:
After single-clicking on block,
press the up/down arrow keys
to change the type
(this actually steps through
options in the block's
first available parameter).

Real single-precision
floating-point values

Lab 1

Amplitude is fixed

Frequency is variable

The slider's ID is 'freq', which is also the Python
variable name. This is used to set the
'Frequency' parameter of the Signal Source.
Since 'Frequency' is underlined, moving the slider
(and therefore changing the value of 'freq') will
trigger the callback in the Signal Source, which
will make it update its internal DSP calculations.

Lab 1

Whether 'freq' should be a
floating-point number, or an integer

1000.0 in scientific notation

Label next to widget in the GUI

Lab 1

Rate at which to throttle samples
through this block. Just happens to be
the same as the sample rate we use
for DSP/display in the other blocks!Vectors & tags

will be covered
another time.

Lab 1

These will be covered later, but for
now have a look at the
Documentation tab where they are
discussed.

Plot multiple signals (they may not be synchronised when drawn*!)

This is purely for generating the correct step sizes on the drawn X-axis!

* Plot two Float streams in sync by
changing Scope's Type to Complex, and
use Float to Complex block beforehand.

0 will cause the plot to auto-scale to the
incoming signal. Entering any other value will
set it to a fixed scale/offset in that dimension.

Lab 1

Generate Python code

Generate Python code
and execute the code

Lab 1Python code generated by GRC

Lab 1

Sine wave of amplitude 1 Toggle auto-scaling

Horizontal offset

Y-axis control (available when
auto-scaling is disabled)

X-axis scale

Toggle DC removal

Draw style (line, points, none)

Control frequency of sine wave
by dragging slider, or entering a
value in the text box

Lab 1

Scientific notation works here too, but you can also append SI units.
The default 'freq' is 1000, so we see '1k'. You could enter '1e3',
which would result in the same value. Similarly '2340' is equivalent to
'2.34k' and '2.34e3', but WX widgets will always show the SI version.
Note: you cannot enter SI units into the parameter fields in GRC!

Lab 1: TCP Client (producer)

Create a sine wave & transmit generated samples
over a TCP connection

Lab 1: TCP Client (producer)

Enable/disable
selected block

Lab 1: TCP Client (producer)

Tip:
Make note of the
keyboard shortcuts
in the block
context menu.

Lab 1: TCP Client (producer)

* The current TCP Source/Sink
implementation does not work on Windows

Tip:
The flowgraph will not start unless a TCP connection is established.
If the TCP connection fails, a Python exception will be thrown and
program will not start.

Lab 1: TCP Server (consumer)

Receive samples from an incoming TCP
connection and plot on a Scope Sink

Lab 1: TCP Server (consumer)

Tip:
The flowgraph will not start until a TCP connection is accepted.
In this case the GUI will not appear until the client has connected.

You don't need to know
the server's IP address.
0.0.0.0 will make it listen
on all network
interfaces.

Lab 1: TCP Server & Client

Client (producer)

Server (consumer)

Tip: you can run each application separately on two network-connected machines.
Just change the client's destination IP address to the machine on which the server is running.

Lab 2

Generate a sine wave & some noise, add both, and
plot the resulting signal in the frequency domain.

Lab 2

Noise source simulates noise floor
(amplitude controlled by slider)

Add a number of
streams together

GUI widget to
draw an FFT plot

Lab 2

Lab 2

'noise_amp' is the slider value, which (here) we interpret in dB, as opposed to a linear sample
ampltitude value (e.g. '1.0').
Therefore we need to convert the value in dB to an actual linear ampltiude value ('volts') for
use by the block (i.e. reverse the 'log10' function). The decimal points are added to force
Python to compute with floating-point values (otherwise it would round and produce integers).

Lab 2

Number of input streams

Lab 2

Sets the range on the Y-axis

Value added to rendered Y-axis values

Used to control how the
computed FFT is scaled
and 'fit' to the available
plot area.

Name of an existing GRC Variable that will be set to the
frequency you click on if clicking in the FFT plot area.

Time relative to Sample Rate!

Lab 2

Tip:
If your FFT Sink will show your baseband signal, you
can use 'Freq Set Varname' to have your flowgraph
process a specific signal-of-interest at the frequency
you click on (e.g. with the Freq Xlating FIR filter).
More on this later...

Lab 2

Scale adjustment

Offset adjustment

Peak
corresponding to
1 kHz tone

Simulated noise
floor is below what
is currently shown
on the plot

Lab 2

Peak moved as
'Frequency' has
been adjusted

Noise amplitude
has been
increased

Lab 2

Averaging enabled, which has the effect
of smoothing/flattening the noise floor

Lab 2

Tip: Hovering your mouse over the plot area will show
this tooltip (right-click to enable/disable it).
Frequency is calculated from the mouse cursor's
horizontal component (and is approximate).
Amplitude is calculated from the mouse cursor's
vertical component.
FFT is calculated from the amplitude of the FFT bin that
corresponds to Frequency.

Lab 2: XY Mode

Use a Scope Sink in XY Mode so we can observe
the characteristics of an IQ (quadrature) signal

Added slider for
signal ampltitude

Lab 2: XY Mode

Since we use the same sample rate consistently across blocks,
'Frequency' will also be the rate at which the IQ sample (complex
phasor) will rotate around the XY plot (e.g. here it'll be once a second).

The plot will collect a group of
samples and display them using
the sample's I value for the X
coordinate, and Q value for the Y
coordinate.
The group will appear to rotate
counter-clockwise in a circle with a
fixed distance of 1 from the origin
(the 'Signal Amp').

Lab 2: XY Mode

To return to normal scope mode, click on any of
the other 'Channel Options' tabs.
Here we recall what a quadrature sine wave
looks like (Y-axis scale has been adjusted).

Lab 2: XY Mode

Zooming in on the sine wave along the Y-axis, we
see the individual I and Q values that make up
each IQ sample. Each of these pairs (taken
together along the vertical) becomes a point on
the XY plot. The I and Q values here determine
the instantaneous angle (argument) of the phasor.

To show the individual samples, the
'Marker' draw style has been changed

Lab 2: XY Mode

Since the frequency has been
increased, but the number of
samples collected by the plot
remains constant, the samples
will span a greater angular (arg)
range.

Lab 2: XY Mode

Now the frequency has been
increased significantly and the
discrete samples can be
seen. In fact they are
overlapping in the plot.

Tip: You can manual enter values that are
outside the slider's preset range via the text box.
E.g. you could enter -2 and observe the sample
group rotate in the opposite (clockwise) direction.
This is what happens when you have a 'negative
frequency' (have a look at the FFT plot).

Lab 2: XY Mode

To join the discrete sample points on
the plot, 'Line Link' can be selected.

Lab 2: XY Mode

Increasing 'Noise Amp' adds noise to
each sample, which can be seen in
the slight offset of each sample point
in the noisy circle.

Lab 2
A Notebook can be used to
organise GUI widgets in tabs.

The Notebook parameter syntax is:
<notebook ID>, <zero-based tab index>

This is our generated GUI

Lab 3: Audio

Output a single tone from the computer's soundcard

Lab 3: Audio

The sample rate has
been changed to
48 kHz, which
generally supported
on all audio hardware.

Instead of generating
a tone, you can also
generate noise.

Floating-point sample values should be
normalised to be between -1.0 and 1.0.
The Audio Sink will scale incoming samples
appropriately for the hardware.
Therefore we should choose an amplitude (0.7)
that is a little less than 'full scale' (i.e. < 1.0).
This is generally good practice (for USRPs too).

Lab 3: Audio

Identifier that is platform-specific.
Blank implies the default.
E.g. on ALSA with pulse audio
installed, you could write 'pulse'.
Run “aplay -L” in a Linux terminal
to see possible ALSA options.

Set to the number of channels
you wish to stream to on your
audio hardware (e.g. 2 for stereo)

Depending on the underlying implementation, this will instruct the
hardware's usermode API to return immediately after being passed
a buffer of audio samples (non-blocking mode), or wait until they
are consumed (blocking mode).
See next page for details.

Lab 3: Audio

● Blocking mode ('OK to Block') will apply
upstream backpressure, which is good when
the Audio Sink is the only hardware device in
the flowgraph.

● This can be problematic if the flowgraph source
is, for example, a USRP. The source is then
also hardware that has its own internal clock
and will be throttling the sample production rate
while the Audio Sink is throttling consumption
with its own unsynchronised clock. This is
called the 'two clock' problem.

Lab 3: Audio

● To workaround this two clock problem, set the
Audio Sink to non-blocking mode (not 'OK to
Block') so that it will never hold up the flowgraph
(i.e. not apply backpressure). It will consume
samples as normal, but if there is ever an excess
(e.g. the USRP is producing samples a little
faster than the Audio Sink can consume) it will
drop the samples (might cause audio glitches).

● This does not solve the case where samples are
being produced slower than the Audio Sink's
consumption rate (this will produce an underrun:
audio will sound choppy and 'aU' will be printed).

Lab 3: Audio

Same sine wave as before, but now we hear it emanating from the computer's speakers.

Lab 3: Audio

Visualise the audio sampled by a soundcard on a
time-based scrolling FFT (waterfall/spectrogram).

Lab 3: Audio

Parameters are identical to the Audio Sink

Lab 3: Audio

Parameters are identical to the FFT Sink

Lab 3: Audio

Running the sine wave generator program at the same time, and changing the frequency.
This is a rough 'loopback' test where the computer's microphone listens to its speakers.

Lab 4: FM RX

Receive a baseband signal using a USRP and listen
to it using a narrow- or wide-band FM demodulator

Lab 4: FM RX

'samp_rate' has
been a Variable
block, but now is a
Text Box whose
value can be
changed at runtime

The USRP Source
block will produce
baseband samples
by sampling RF on a
selected antenna at
a particular
frequency, sample
rate and gain

A Rational Resampler will adapt
the notional rate of a stream by
interpolating/decimating overall,
as needed.
This is necessary here because
USRP rates are not integer
multiples of Audio Sink rates.

The two FM receiver blocks
accept complex baseband
samples and output
demodulated audio. They differ
mainly in terms of their internal
filter bandwidths.

Disable 'OK
to Block' to
work around
'two clock'
problem

Lab 4: FM RX

Usually 'TX/RX' or 'RX2'

Tip: To be certain about any of the
possble parameter values, consult
the online documentation for your
device and/or daughterboard.
You can also run 'uhd_usrp_probe'
in a terminal for hardware specs.
Watch your console during runtime
for any warning messages from
UHD regarding invalid settings! Usually 0

Valid range depends on hardware

Valid range depends on hardware

Valid range depends on hardware

Sample type on output port

Sample type from USRP

Same as UHD device args

RX streamer options

Mapping from physical (USRP)
channel index to logical (GRC
port) channel index (zero-based).
Leave as the empty list '[]' for the
default linear mapping.

Tip: usually all parameters
can be left as they are
(except for sample rate,
frequency, gain and antenna).

These will be covered later

Selects a 'side', e.g. A:A or A:B

Sets the number of output ports
and duplicates the channel-
specific parameters accordingly.

Lab 4: FM RX

● This example uses the USRP B200
● Valid ranges:

– Antenna: TX/RX, RX2

– Frequency: 70 MHz – 6 GHz

– RX Gain: 0 – 73 (default of ~25 is a good starting point)

– Sample Rate: 62.5 ksps – 56 Msps (62.5e3 - 56e6)
● Default Master Clock Rate = 32e6 (max: 61.44e6)
● (MCR / sample rate) must be an integer, and should be divisible by 4

for the best RF performance (flat spectrum)
● MCR can be changed with “master_clock_rate=X” in Device Addr,

where X is new MCR in Hz (e.g. 40e6)

● A 'O' on the console indicates an overrun, and occurs
when the host is not able to consume samples quickly
enough.

Lab 4: FM RX

Determine the input & output sample
format, and what format (real or
complex) the filter taps will be

If Taps is left blank, the taps are
automatically computed

Fractional BW affects the shape of
the low-pass filter that is generated
when no filter taps are supplied.
Specifically it determines how steep
the low-pass rolloff is. Leaving the
default 0 tells the code to select a
reasonable default (currently 0.4)

We need to adapt the USRP rate to something suitable for the
Audio Sink. The default 'samp_rate' value is 250e3, which sets the
rate at which the USRP produces samples. The Audio Sink is
configured for a sample (consumption) rate of 48e3, but (250000 /
48000) is not an integer. We can cheat here and set Decimation to
be the incoming notional sample rate (250000), and the
Interpolation to be a different (non-divisible) outgoing notional
sample rate (192000*). The code will calculate the GCD. Since the
parameters must be integers, and 'samp_rate' is a floating-point
number, we use the Python function 'int' to convert it to an integer.
* 'audio_rate' is multiplied by 4 ('audio_interp') because the
demodulator blocks will perform additional decimation (by 4).
Specifically the WBFM block should be given a high rate (i.e. high
bandwidth signal since FM broadcast channels are 200 kHz wide).

Lab 4: FM RX

The Wide Band FM block makes
it easy to listen to stations in the
normal Broadcast FM band.

Incoming notional sample rate (192e3)

Decimation factor: outgoing rate is (incoming / decimation) = 48000

Lab 4: FM RX

The Narrow Band FM block
makes it easy to listen to narrow
analog and digital channels that
use FM or FSK.

Incoming notional sample rate (48000*)

Outgoing notional sample rate (48000)

To switch between
modulators in this example,
simply enable one block and
disable the other.

FM de-emphasis factor (more on Wikipedia)

Maximum amount signal will deviate from center (0 Hz). This determines
output value scaling (e.g. here +5 kHz will be 1.0, -5 kHz will be -1.0).

* 'audio_interp' is
changed to 1 here as
NBFM doesn't need such
a high bandwidth signal

http://en.wikipedia.org/wiki/FM_broadcasting#Pre-emphasis_and_de-emphasis

Lab 4: FM RX

The baseband spectrum (a local radio station) in shown on the FFT plot, and the signal at the
center of the spectrum is demodulated producing audio coming out of the host's soundcard.

Lab 4: Manual FM RX

Repeat the Narrow Band FM reception example, but
perform the individual demodulation steps.

Lab 4: Manual FM RX

Power Squelch will squelch
(or mute) the baseband signal
when its amplitude is below
the threshold. This means we
can avoid listening to noise. The Quadrature Demodulator

is the key part of demodulating
an FM signal. The 'deviation' is
the maximum frequency shift
we expect.

The unfiltered (raw) FM-demodulated
signal will pass through the Low Pass
Filter, which will keep the voice
frequency range we'd like to hear, and
attenuate anything higher.

The Scope Sink
will plot both the
unfiltered and
filtered signal.

Lab 4: Manual FM RX

Threshold above which the signal should be allowed to pass through

Averaging factor applied to the measured signal amplitude used for detection

No: generate zero samples while squelched.
Yes: don't produce any samples while squelched.

Actually the
'alpha' of a
single-pole
IIR filter

Length (in number of samples) of attack and decay windows (see next)

Lab 4: Manual FM RX
Alpha must be between zero and one. One
means no averaging will be applied, and zero
means the signal will never change (always stay
at zero). The smaller the value, the longer it will
take for the squelch to open when a signal of a
particular amplitude is present. You should
experiment until you find a suitable value that
works well for your application (e.g. minimal
number of false 'unmutings').
Note: Alpha only applies to the signal detection
process, not to the signal that is output when the
block is in the unmuted state.

Having a non-zero Ramp will also improve the
performance of this block. When Ramp is 0, the
signal will be unmuted immediately once its
averaged amplitude exceeds the threshold.
When non-zero, the block will transition through
an attack phase when unmuted, and a decay
phase when muting once more. The Ramp value
is the number of samples the attack and decay
phases should last. During these phases, the
input signal will be multiplied by a smooth ramp
function (actually the part of a sine wave), which
has the effect of fading in/out the original signal.

Lab 4: Manual FM RX

This block effectively outputs the
instantaneous frequency change in the
incoming quadrature baseband signal as
a real floating-point output (in essence
pure Frequency de-Modulation).
Gain is a scaling factor applied to this
calculation. The equation calculates the
gain such our output will ideally vary
between -1.0 and 1.0, where each extent
represents the maximum frequency
deviation we expect in our signal. Usually
this deviation is set by the transmitter.

Lab 4: Manual FM RX

Determine the sample format, and whether the filter
will decimate (reduce the notional sample rate) or
interpolate (increase the notional sample rate)

The decimation or interpolation rate (depending on the FIR Type)

Gain applied by the FIR filter itself

Notional incoming sample rate (48000)

Frequency of the end of the passband (3.5 kHz)

Width from the end of the passband to the beginning of the stop band

Select the appropriate Window function when generating filter taps

Additional value used by the Kaiser window

Lab 4: Manual FM RX

The Filter Design Tool (run 'gr_filter_design') is a GUI that allows you to interactively design
different types of filters. Once you're happy with your design, you can place an
Interpolating/Decimating FIR Filter block into your GRC flowgraph and set its taps using the
filter coefficients output by the designer.

Lab 4: Manual FM RX

The baseband signal will be demodulated as before, however audio will only be heard if
there is a strong-enough signal present at the center of the spectrum to open the squelch.
The Scope Sink shows the raw demodulated signal (a whistle) in blue, and the low-pass
filtered (and therefore slightly delayed) signal in green, which is output to the Audio Sink.

Lab 5: FM TX

Sample audio from your soundcard and transmit it
from a USRP using a Narrow Band FM carrier.

You need to have a valid amateur radio (HAM) license
to actually transmit on the frequency in this example!

Lab 5: FM TX
You need to have a valid amateur radio (HAM) license
to actually transmit on the frequency in this example!

We apply an additional interpolation factor so the NBFM Transmit block outputs a
higher notional sample rate (192000), and then we resample for the USRP (to
250000).
In transmit chain, you will usually be able to control the modulated signal's
notional baseband rate (here it is 192000, i.e. prior to resampling for the USRP).
This makes for a tradeoff between a higher-rate, potentially higher-quality
synthesised baseband signal (at the expense of processing power), or saving
CPU cycles for lower-quality. This choice is usually application-/signal-specific.

'OK to Block' has no effect with
ALSA. In non-blocking mode (to
work around the two clock
problem), portaudio (for
example) will zero-fill if no audio
samples are available.

The USRP
Sink will
transmit the
baseband
signal.

Lab 5: FM TX

Incoming notional sample rate (48000)

Outgoing notional sample rate
(192000)

Same as receiver

You need to have a valid amateur radio (HAM) license
to actually transmit on the frequency in this example!

Lab 5: FM TX
You need to have a valid amateur radio (HAM) license
to actually transmit on the frequency in this example!

Outgoing notional sample rate (250000)

Incoming notional sample rate (192000)

Lab 5: FM TX
You need to have a valid amateur radio (HAM) license
to actually transmit on the frequency in this example!

Parameters are identical to the USRP Source

Tip: Certain valid
ranges might be
different between RX
and TX for the same
device. E.g. B200 TX
gain range is 0 – 89.5.

Tip: A 'U' on the console
indicates the USRP ran
out of samples to
transmit, so the host
isn't producing them
quickly enough.

Lab 5: FM TX

The audio (a whistle) picked up by the sound card will be shown in the scope plot, and
transmitted by the USRP at the selected frequency.

You need to have a valid amateur radio (HAM) license
to actually transmit on the frequency in this example!

Lab 5: FM TX

● If you see lots of the letter 'U' in the console, the
transmit chain of the USRP is experiencing
underruns: samples cannot be produced quickly
enough by the host.

● In this example (under Linux/ALSA) it will occur
because of the 'two clock' problem, but cannot
be fixed by changing 'OK to Block' since the
Audio Source is producing samples that are all
being consumed without issue, but it happens
to be doing this a little too slowly.

Lab 5: FM TX

● It is possible to cheat by adding a 'fudge', or 'twiddle',
factor to the Interpolation rate at the Rational Resampler.

● In the example it was:
– int(samp_rate * 1.0)

● We can ask the resampler to produce more samples for
the same number of input samples so that the USRP will
always have enough samples to transmit

● The Interpolation rate would become:
– int(samp_rate * 1.01)

– The notional output rate was increased by 1% (1.0 + 0.01),
which equals = 252500.
The USRP UHD Sink will still consume at 250000.

GNU Radio:

http://gnuradio.org/

CGRAN:

http://cgran.org/

Ettus Research:

http://ettus.com/

UHD Docs:

http://files.ettus.com/uhd_docs/doxymanual/html/

http://gnuradio.org/
http://cgran.org/
http://ettus.com/
http://files.ettus.com/uhd_docs/doxymanual/html/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91

