USRP Hardware Driver and USRP Manual Version: 4.2.0.0
UHD and USRP Manual
USRP X4x0 Series

Comparative Features List

  • Hardware Capabilities:
    • Dual QSFP28 Ports (can be used with 10 GigE or 100 GigE)
    • External PPS input & output
    • External 10 MHz input
    • Internal GPSDO for timing, location, and time/frequency reference
    • External GPIO Connector (2xHDMI)
    • USB-C debug port, providing JTAG and console access
    • USB-C OTG port (USB 2.0)
    • Xilinx Zynq UltraScale+ RFSoC (ZU28DR), includes quad-core ARM Cortex-A53 (1200 MHz), dual-core ARM Cortex-R5F real-time unit, and UltraScale+ FPGA
    • 4 GiB DDR4 RAM for Processing System, 2x4 GiB DDR4 RAM for Programmable Logic
    • Up to 4x400 MHz of analog bandwidth, center frequency 1 MHz - 7.2 GHz (tunable to 8 GHz) using ZBX Daughterboard
    • Closed-loop temperature control
    • Default airflow: front-to-back
    • Field replaceable fan tray
  • Software Capabilities:
  • FPGA Capabilities:
    • Timed commands in FPGA
    • Timed sampling in FPGA
    • RFNoC capable: Supports various CHDR bus widths from 64-bits (for minimal footprint) up to 512 bits (for maximum throughput)
  • Mechanical Capabilities:
    • Rack-mountable with additional rack mount kit (2 USRPs side-by-side, or 1 USRP per 1U)
    • Stackable (with stack mount kit)
    • Airflow default direction can be changed to back-to-front with an accessory, which is sold separately

Overview and Features

Ettus USRP X410

The Ettus USRP X410 is a fourth-generation Software Defined Radio (SDR) out of the USRP family of SDRs. It contains two ZBX Daughterboards for a total of 4 channels at up to 400 MHz of analog bandwidth each. The analog features of the ZBX Daughterboard are described in a separate manual page.

The USRP X410 features a Xilinx RFSoC, running an embedded Linux system. Like other USRPs, it is addressable through a 1 GbE RJ45 connector, which allows full access to the embedded Linux system, as well as data streaming at low rates. In addition, it features two QSFP28 connectors, which allow for up to 4x10 GbE or 1x100 GbE connections each.

The front panel provides access to the RF connectors (SMA), Tx/Rx status LEDs, programmable GPIOs, and the power button. The rear panel is where the power and data connections go (Ethernet, USB) as well as time/clock reference signals and GPS antenna.

X410's cooling system uses a field replaceable fan assembly and supports two variants: one that pulls air front-to-back and one that pulls air back-to-front. By default, the unit comes with the front-to-back fan assembly.

The RFSoC CPU/FPGA and Host Operating System

The main chip (the SoC) of the X410 is a Xilinx Zynq UltraScale+ RFSoC (ZU28DR). It contains an ARM quad-core Cortex A53 CPU (referred to as the "APU"), an UltraScale+ FPGA including peripherals such as built-in data converters and SD-FEC cores, and an ARM Cortex-R5F real-time processor (the "RPU").

The programmable logic (PL, or FPGA) section of the SoC is responsible for handling all sampling data, the high-speed network connections, and any other high-speed utilities such as custom RFNoC logic. The processing system (PS, or CPU) is running a custom-built OpenEmbedded-based Linux operating system. The OS is responsible for all the device and peripheral management, such as running MPM, configuring the network interfaces, running local UHD sessions, etc.

The programmable logic bitfile contains certain hard-coded configurations of the hardware, such as what type of connectivity the QSFP28 ports use, and how the RF data converters are configured. That means to change the QSFP28 from a 10 GbE to a 100 GbE connection requires changing out the bitfile, as well as when reconfiguring the data converters for different master clock rates. See FPGA Image Flavors for more information.

It is possible to connect to the host OS either via SSH or serial console (see sections SSH Connection and Serial Connection, respectively).

The X410 has a higher maximum analog bandwidth than previous USRPs. It can provide rates up to 500 Msps, resulting in a usable analog bandwidth of up to 400 MHz. In order to facilitate the higher bandwidth, UHD uses a technology called Data Plane Development Kit (DPDK). See the DPDK page for details on how it can improve streaming, and how to use it.

Daughterboard Connectivity

The Ettus USRP X410 contains two ZBX daughterboards. To find out more about the capabilities of these analog front-end cards, see ZBX Daughterboard.

Front and Back Panels

Ettus USRP X410 Front Panel

The front panel provides access to the RF ports and status LEDs of the ZBX Daughterboard. It also provides access to the front-panel GPIO connectors (2x HDMI) and the power button.

Ettus USRP X410 Back Panel

The back panel provides access to power, data connections, clocking and timing related connections, and some status LEDs:

  • The QSFP28 connectors have different configurations dependent on the FPGA image type (see also FPGA Image Flavors)
  • The iPass+ zHD connectors are unsupported
  • GPS ANT, REF IN, and PPS IN allow connecting a GPS antenna, a reference clock (e.g., 10 MHz) and a 1 PPS signal for timing purposes
  • The TRIG IN/OUT port is not supported in default FPGA images
  • The serial number is embedded in a QR code
  • There are four user-configurable status LEDs (see also Rear Panel Status LEDs)
  • The CONSOLE JTAG USB-C port is a debug port that allows serial access to the SCU or the OS (see also Serial Connection)
  • The USB to PS USB-C port is accessible by the operating system, e.g., to connect mass storage devices. It can also be used to expose the eMMC storage as a mass storage device to an external computer, e.g., for updating the filesystem
  • The RJ45 Ethernet port allows accessing the operation system, e.g., via SSH. It is also possible to stream data over this interface, albeit at a slow rate (approx. 10 Msps).

The STM32 Microcontroller

The STM32 microcontroller (also referred to as the "SCU") controls various low-level features of the X4x0 series motherboard: It controls the power sequencing, reads out fan speeds and some of the temperature sensors. It is connected to the RFSoC via an I2C bus. It is running software based on Chromium EC.

It is possible to log into the STM32 using the serial interface (see Connecting to the Microcontroller). This will allow certain low-level controls, such as remote power cycling should the CPU have become unresponsive for whatever reason.

Rack Mounting and Cooling

Coming soon!

eMMC Storage

The main non-volatile storage of the USRP is a 16 GB eMMC storage. This storage can be made accessible as a USB Mass Storage device through the USB-OTG connector on the back panel.

The entire root file system (Linux kernel, libraries) and any user data are stored on the eMMC. It is partitioned into four partitions:

  1. Boot partition (contains the bootloader). This partition usually does not require modification.
  2. A data partition, mounted in /data. This is the only partition that is not erased during file system updates.
  3. Two identical system partitions (root file systems). These contain the operating system and the home directory (anything mounted under / that is not the data or boot partition). The reason there are two of these is to enable remote updates: An update running on one partition can update the other one without any effect to the currently running system. Note that the system partitions are erased during updates and are thus unsuitable for permanently storing information.

Note: It is possible to access the currently inactive root file system by mounting it. After logging into the device using serial console or SSH (see the following two sections), run the following commands:

$ mkdir temp
$ mount /dev/mmcblk0p3 temp # This assumes mmcblk0p3 is currently not mounted
$ ls temp # You are now accessing the idle partition:
bin   data  etc   lib         media  proc  sbin  tmp    usr
boot  dev   home  lost+found  mnt    run   sys   uboot  var

The device node in the mount command might differ, depending on which partition is currently already mounted.

Getting Started

Firstly, download and install UHD on a host computer following Binary Installation or Building and Installing UHD from source. The USRP X410 requires UHD version 4.1 or above.

Assembling the X410

Inside the kit you will find the X410 and an X410 power supply. Plug these in, connect the 1GbE RJ45 interface to your network, and power on the device by pressing the power button.

Network Connectivity

Once the X410 has booted, determine the IP address and verify network connectivity by running uhd_find_devices on the host computer:

$ uhd_find_devices
--------------------------------------------------
-- UHD Device 0
--------------------------------------------------
Device Address:
    serial: 1234ABC
    addr: 10.2.161.10
    claimed: False
    mgmt_addr: 10.2.161.10
    product: x410
    type: x4xx

By default, an X410 will use DHCP to attempt to find an address.

At this point, you should run:

uhd_usrp_probe --args addr=<IP address>

to ensure functionality of the device.

Note: If you receive the following error:

Error: RuntimeError: Graph edge list is empty for rx channel 0

then you will need to download a UHD-compatible FPGA as described in Updating the FPGA or using the following command (it assumes that FPGA images have been downloaded previously using uhd_images_downloader, or that the command is run on the device itself):

uhd_image_loader --args type=x4xx,addr=<ip address>,fpga=X4_200

When running on the device, use 127.0.0.1 as the IP address.

You can now use existing UHD examples or applications (such as rx_sample_to_file, rx_ascii_art_dft, or tx_waveforms) or other UHD-compatible applications to start receiving and transmitting with the device.

See Network Interfaces for further details on the various network interfaces available on the X410.

Network Interfaces

The Ettus USRP X410 has various network interfaces:

  • eth0: RJ45 port.
    • The RJ45 port comes up with a default configuration of DHCP, that will request a network address from your DHCP server (if available on your network). This interface is agnostic of FPGA image flavor.
  • int0: internal interface for network communication between the embedded ARM processor and FPGA.
    • The internal network interface is configured with a static address: 169.254.0.1/24. This interface is agnostic of FPGA image flavor.
  • sfpX [, sfpX_1, sfpX_2, sfpX_3]: QSFP28 network interface(s), up-to four (one per lane) based on implemented protocol.
    • Each QSFP28 port has four high-speed transceiver lanes. Therefore, depending on the FPGA image flavor, up-to four different network interfaces may exist per QSFP28 port, using the sfpXfor the first lane, and sfpX_1-3 for the other three lanes. Each network interface has a default static IP address. Note that for multi-lane protocols, such as 100 GbE, a single interface is used (sfpX).

The configuration files for these network interfaces are stored in: /data/network/<interface>.network.

Interface Name Description Default Configuration Configuration File Example: X4_200 FPGA image
eth0 RJ45 DHCP eth0.network DHCP
int0 Internal 169.254.0.1/24 int0.network 169.254.0.1/24
sfp0 QSFP28 0 (4-lanes interface or lane 0) 192.168.10.2/24 sfp0.network 192.168.10.2/24
sfp0_1 QSFP28 0 (lane 1) 192.168.11.2/24 sfp0_1.network 192.168.11.2/24
sfp0_2 QSFP28 0 (lane 2) 192.168.12.2/24 sfp0_2.network 192.168.12.2/24
sfp0_3 QSFP28 0 (lane 3) 192.168.13.2/24 sfp0_3.network 192.168.13.2/24
sfp1 QSFP28 1 (4-lanes interface or lane 0) 192.168.20.2/24 sfp1.network N/C
sfp1_1 QSFP28 1 (lane 1) 192.168.21.2/24 sfp1_1.network N/C
sfp1_2 QSFP28 1 (lane 2) 192.168.22.2/24 sfp1_2.network N/C
sfp1_3 QSFP28 1 (lane 3) 192.168.23.2/24 sfp1_3.network N/C

For example, /data/network/eth0.network by default looks like:

[Match]
Name=eth0
KernelCommandLine=!nfsroot
[Network]
DHCP=ipv4
IPForward=ipv4
[DHCP]
UseHostname=true
ClientIdentifier=mac

In order to change the eth0 interface from using DHCP to using a static IP, you can edit /data/network/eth0.network to be like:

[Match]
Name=eth0
KernelCommandLine=!nfsroot
[Network]
Address=192.168.1.123/24

replacing the IP address with the IP of your choice.

Network Status LEDs

The Ettus USRP X410 is equipped with status LEDs for its network-capable ports: RJ45 and QSFP28s, see RJ45 LED Behavior and QSFP28 LED Behavior accordingly.

RJ45 LED Behavior

The RJ45 port has two independent LEDs: green (right) and yellow (left). The table below summarizes the LEDs' behavior. Note that link speed indication is not currently supported.

Link / Activity Green LED Yellow LED
No Link Off Off
Link / No Activity On Off
Link / Activity On Blinking

QSFP28 LED Behavior

Each QSFP28 connector has four LEDs, one for each high-speed transceiver lane. The table below summarizes the LEDs' behavior, note that for multi-lane protocols, such as 100 GbE, the corresponding LEDs are ganged together. Within the same image, multiple speeds on the same port (e.g., both 10 GbE and 100 GbE) are not supported, therefore link speed indication is not supported.

Link / Activity QSFP28 LED (4 total)
No Link Off
Link / No Activity Green (solid)
Link / Activity Amber (blinking)

Security-related Settings

The X410 ships without a root password set. It is possible to ssh into the device by simply connecting as root, and thus gaining access to all subsystems. To set a password, run the command

$ passwd

on the device.

Serial Connection

It is possible to gain access to the device using a serial terminal emulator. To do so, the USB debug port needs to be connected to a separate computer to gain access. Most Linux, OSX, or other Unix flavors have a tool called 'screen' which can be used for this purpose, by running the following command:

$ sudo screen /dev/ttyUSB2 115200

In this command, we prepend 'sudo' to elevate user privileges (by default, accessing serial ports is not available to regular users), we specify the device node (in this case, /dev/ttyUSB2), and the baud rate (115200).

The exact device node depends on your operating system's driver and other USB devices that might be already connected. Modern Linux systems offer alternatives to simply trying device nodes; instead, the OS might have a directory of symlinks under /dev/serial/by-id:

$ ls /dev/serial/by-id
usb-Digilent_Digilent_USB_Device_2516351DDCC0-if02-port0
usb-Digilent_Digilent_USB_Device_2516351DDCC0-if03-port0

Note: Exact names depend on the host operating system version and may differ.

The first (with the if02 suffix) connects to the STM32 microcontroller (SCU), whereas the second (with the if03 suffix) connects to Linux running on the RFSoC APU.

$ sudo screen /dev/serial/by-id/usb-Digilent_Digilent_USB_Device_2516351DDCC0-if03-port0 115200

After entering the username root (no password is set by default), you should be presented with a shell prompt similar to the following:

root@ni-x4xx-1234ABC:~#

On this prompt, you can enter any Linux command available. Using the default configuration, the serial console will also show all kernel log messages (unlike when using SSH, for example), and give access to the boot loader (U-boot prompt). This can be used to debug kernel or bootloader issues more efficiently than when logged in via SSH.

Connecting to the Microcontroller

The microcontroller (which controls the power sequencing, among other things) also has a serial console available. To connect to the microcontroller, use the other UART device. In the example above:

$ sudo screen /dev/serial/by-id/usb-Digilent_Digilent_USB_Device_2516351DDCC0-if02-port0 115200

It provides a very simple prompt. The command 'help' will list all available commands. A direct connection to the microcontroller can be used to hard-reset the device without physically accessing it and other low-level diagnostics. For example, running the command reboot will emulate a reset button press, resetting the state of the device, while the command powerbtn will emulate a power button press, turning the device back on again.

SSH Connection

The USRP X4x0-Series devices have two network connections: The dual QSFP28 ports, and an RJ45 connector. The latter is by default configured by DHCP; by plugging it into into 1 Gigabit switch on a DHCP-capable network, it will get assigned an IP address and thus be accessible via ssh.

In case your network setup does not include a DHCP server, refer to the section Serial Connection. A serial login can be used to assign an IP address manually.

After the device obtained an IP address you can log in from a Linux or OSX machine by typing:

$ ssh root@ni-x4xx-1234ABC # Replace with your actual device name!

Depending on your network setup, using a .local domain may work:

$ ssh [email protected]

Of course, you can also connect to the IP address directly if you know it (or set it manually using the serial console).

Note: The device's hostname is derived from its serial number by default (ni-x4xx-$SERIAL). You can change the hostname by creating the file /data/network/hostname, saving the desired hostname in it, then rebooting.

On Microsoft Windows, the connection can be established using a tool such as PuTTY, by selecting a username of root without password.

Like with the serial console, you should be presented with a prompt like the following:

root@ni-x4xx-1234ABC:~#

Updating the FPGA

The FPGA can be updated simply using uhd_image_loader:

uhd_image_loader --args type=x4xx,addr=<IP address of device> --fpga-path <path to .bit>

or

uhd_image_loader --args type=x4xx,addr=<IP address of device>,fpga=FPGA_TYPE

A UHD install will likely have pre-built images in /usr/share/uhd/images/. Up-to-date images can be downloaded using the uhd_images_downloader script:

uhd_images_downloader

will download images into /usr/share/uhd/images/ (the path may differ, depending on how UHD was installed).

Also note that the USRP already ships with compatible FPGA images on the device - these images can be loaded by SSH'ing into the device and running:

uhd_image_loader --args type=x4xx,mgmt_addr=127.0.0.1,fpga=X4_200

FPGA Image Flavors

Unlike the USRP X310 or other third-generation USRP devices, the FPGA image flavors do not only encode how the QSFP28 connectors are configured, but also which master clock rates are available. This is because the data converter configuration is part of the FPGA image (the ADCs/DACs on the X410 are on the same die as the FPGA).

The image flavors consist of two short strings, separated by an underscore, e.g. X4_200 is an image flavor which contains 4x 10 GbE, and can handle an analog bandwidth of 200 MHz. The first few characters describe the configuration of the QSFP28 ports: 'X' stands for 10 GbE, 'C' stands for 100 GbE. The second group of characters indicates the analog bandwidth.

As of UHD 4.2, the following images flavors are shipped with UHD:

FPGA Image Flavor Bandwidth QSFP28 Port 0 Interface QSFP28 Port 1 Interface DDC/DUC DRAM
X4_200 200 MHz 4x 10 GbE (All Lanes) N/C Yes Yes (4-Ch Replay)
CG_400 400 MHz 100 GbE 100 GbE No No

The following list shows some potential use-cases for different FPGA images:

  • X4_200: 200 MHz analog bandwidth, or below (using RFNoC DDC/DUCs), streaming between the X410 and an external host computer, or streaming to/from on-board DRAM using the RFNoC Record/Replay block.
  • CG_400: Full-rate (400 MHz analog bandwidth) streaming between the X410 and an external host computer. The current implementation requires dual 100 GbE connections for 4 full-duplex channels or a single 100 GbE connection for 2 full-duplex channels.
  • X4_400: Full-rate (400 MHz analog bandwidth) streaming to/from on-board DRAM using the RFNoC Record/Replay block. Up to 4 x 10 GbE connections may be used to access the DRAM from an external host computer. Note that 10 GbE is not fast enough for continuous full-rate streaming at this rate.

Run make help in the fpga/usrp3/top/x400 directory of the UHD repository to see a complete list of FPGA images that can be built, some of which are experimental (unsupported).

The analog bandwidth determines the available master clock rates. The 200 MHz images allow master clock rates of 245.76 MHz or 250 MHz. The 400 MHz images allow master clock rates of 491.52 MHz or 500 MHz.

Applications that require more than 200 MHz bandwidth should use the full rate of the 400 MHz images. Applications that require 200 MHz bandwidth or less should use the 200 MHz images and make use the DDC/DUC for lower rates.

DDR4 Memory for Programmable Logic

The USRP X410 has two banks of DDR4 memory available for use by the programmable logic in the FPGA. Each bank has a 4 GiB capacity. The DRAM can be run at up to 2.4 GT/s but is clocked at 2.0 GT/s by default to ease FPGA timing closure.

The FPGA memory controller exposes each bank of DRAM as a 512-bit interface clocked at 250 MHz. This interface is then presented to RFNoC as up to 4 AXI interfaces. For 200 MHz images, each AXI interface is 64-bit at 250 MHz. For 400 MHz images, each AXI interface is 128-bit at 250 MHz. This allows for the maximum sample rate to be read and written to DRAM for up to 4 channels simultaneously.

The default use for the DRAM is the Replay RFnoC block, which supports recording and playback of data in real time. See section FPGA Image Flavors for a list of which images have DRAM by default.

Updating Filesystems

The easiest way to update the filesystem is directly from the X410 via the built-in usrp_update_fs utility.

To perform a filesystem "factory-reset", run:

$ usrp_update_fs

To update to the most-recent filesystem, run:

$ usrp_update_fs -t master

Note: Old filesystems may not support this utility. Alternatively, one may use Mender to update the filesystem. See Updating the Filesystem Using Mender.

Updating the Filesystem Using Mender

Mender is a third-party software that enables remote updating of the root file system without physically accessing the device (see also the Mender website). Mender can be executed locally on the device, or a Mender server can be set up which can be used to remotely update an arbitrary number of USRP devices. Mender servers can be self-hosted, or hosted by Mender (see mender.io for pricing and availability).

When updating the file system using Mender, the tool will overwrite the root file system partition that is not currently mounted (note: the onboard flash storage contains two separate root file system partitions, only one is ever used at a single time). Any data stored on that partition will be permanently lost, including the currently loaded FPGA image. After updating that partition, it will reboot into the newly updated partition. Only if the update is confirmed by the user, the update will be made permanent. This means that if an update fails, the device will be always able to reboot into the partition from which the update was originally launched (which presumably is in a working state). Another update can be launched now to correct the previous, failed update, until it works.

Downloading a Mender Artifact

To initiate an update directly from the X410 device, download a Mender artifact containing the update itself. These are files with a .mender suffix. They can be downloaded by using the uhd_images_downloader utility:

$ uhd_images_downloader -t mender -t x4xx

Append the -l switch to print out the URLs only:

$ uhd_images_downloader -t mender -t x4xx -l

By default, this utility will download the .mender artifact to /usr/share/uhd/images.

Note: uhd_images_downloader will only download the artifacts released with the currently installed filesystem version (factory-reset). To install the latest released filesystem version instead, first download the most-recent manifest from the UHD Github repository:

$ wget https://raw.githubusercontent.com/EttusResearch/uhd/master/images/manifest.txt

Second, use the -m switch to use the new manifest file:

$ uhd_images_downloader -t mender -t x4xx -m manifest.txt

Installing the Mender Artifact

Once a Mender artifact is downloaded to the X410 (see Downloading a Mender Artifact), install it by running mender on the command line:

$ mender install /path/to/latest.mender

Alternatively, Mender may be used to download and install an artifact that is stored on a remote server, all in one step:

$ mender install http://server.name/path/to/latest.mender

This procedure will take a while. If the new filesystem requires an update to the MB CPLD, see Updating the Motherboard CPLD before proceeding. After mender has logged a successful update, reboot the device:

$ reboot

If the reboot worked, and the device seems functional, commit the changes so the boot loader knows to permanently boot into this partition:

$ mender commit

To identify the currently installed Mender artifact from the command line, the following file can be queried:

$ cat /etc/mender/artifact_info

If you are running a hosted server, the updates can be initiated from a web dashboard. From there, you can start the updates without having to log into the device, and can update groups of USRPs with a few clicks in a web GUI. The dashboard can also be used to inspect the state of USRPs. This is a simple way to update groups of rack-mounted USRPs with custom file systems.

Resetting Boot Environment

In the event that the new system has problems booting, you can attempt to reset the boot environment using the following instructions.

First, connect to the USB serial console at a baud rate of 115200. Boot the device, and stop the boot sequence by typing noautoboot at the prompt. Then, run the following commands in the U-boot command prompt:

env default -a
env save
reset

The last command will reboot the USRP. If the / filesystem was mounted to mmcblk0p2 as described in Updating Filesystems, then stop the boot again and run:

run altbootcmd

Otherwise, let the boot continue as normal.

Updating the Motherboard CPLD

Caution! Updating the motherboard CPLD has the potential to brick your device if done improperly.

After updating the filesystem, you may have to update your motherboard CPLD. If you forget to update the CPLD, MPM will fail to fully initialize and emit a warning. This is not critical, and the CPLD update can be performed later by following these same steps, but the device will not be usable until then.

Even though the CPLD may not require updating, it is recommended to always run these steps for a consistent update procedure.

You can update the motherboard (MB) CPLD by running the following command on the X410:

x4xx_update_cpld --file=<path to cpld-x410.rpd>

Note: Old filesystems may not contain this command. If you are performing a mender update, simply run these commands after the update.

Filesystems will usually contain a compatible cpld-x410.rpd file at /lib/firmware/ni/cpld-x410.rpd. If you're installing a new filesystem via mender, you may have to mount the new filesystem (before you boot into it) in order to access the new firmware:

mkdir /mnt/other
mount /dev/mmcblk0p3 /mnt/other
cp /mnt/other/lib/firmware/ni/cpld-x410.rpd ~
umount /mnt/other

Note that the other filesystem may be either /dev/mmcblk0p2 or /dev/mmcblk0p3.

If x4xx_update_cpld returns an error, diagnose the error before proceeding.

After updating the MB CPLD, a power cycle is required for the changes to take effect. Shut down the device using:

shutdown -h now

and then un-plug, wait several seconds, then re-plug the power to the USRP.

Alternatively, in lieu of physical access, the microcontroller can be accessed using the USB serial port as described in Serial Connection, and can be used to reboot the device:

reboot
powerbtn

Building the Motherboard CPLD

Read this section if you want to create your own motherboard CPLD image.

The motherboard CPLD's source code can be found in the UHD source code repository under fpga/usrp3/top/x400/cpld.

Building the MB CPLD requires "Quartus 20.1.0 Standard Edition or later". To generate the MB CPLD image, navigate to fpga/usrp3/top/x400/cpld and run:

make build

Read the Makefile in that directory for further details.

Updating the SCU

The writable SCU image file is stored on the filesystem under /lib/firmware/ni/ec-titanium-revX.RW.bin (where X is a revision compatibility number). To update, simply replace the .bin file with the updated version and reboot.

USB Access to eMMC

While Mender should be used for routine filesystem updates (see Updating Filesystems), it is also possible to access the X410's internal eMMC from an external host over USB. This allows accessing or modifying the filesystem, as well as the ability to flash the device with an entirely new filesystem.

In order to do so, you'll need an external computer with two USB ports, and two USB cables to connect the computer to your X410. The instructions below assume a Linux host.

First, connect to the APU serial console at a baud rate of 115200. Boot the device, and stop the boot sequence by typing noautoboot at the prompt. Then, run the following command in the U-boot command prompt:

ums 0 mmc 0

This will start the USB mass storage gadget to expose the eMMC as a USB mass storage device. You should see a spinning indicator on the console, which indicates the gadget is active.

Next, connect your external computer to the X410's USB to PS port using an OTG cable. Your computer should recognize the X410 as a mass storage device, and you should see an entry in your kernel logs (dmesg) that looks like this:

usb 3-1: New USB device found, idVendor=3923, idProduct=7a7d, bcdDevice= 2.23
usb 3-1: New USB device strings: Mfr=1, Product=2, SerialNumber=0
usb 3-1: Product: USB download gadget
usb 3-1: Manufacturer: National Instruments
sd 6:0:0:0: [sdc] 30932992 512-byte logical blocks: (15.8 GB/14.8 GiB)
 sdc: sdc1 sdc2 sdc3 sdc4
sd 6:0:0:0: [sdc] Attached SCSI removable disk

The exact output will depend on your machine, but from this log you can see that the X410 was recognized and /dev/sdc is the block device representing the eMMC, with 4 partitions detected (see eMMC Storage for details on the partition layout).

It is now possible to treat the X410's eMMC as you would any other USB drive: the individual partitions can be mounted and accessed, or the entire block device can be read/written.

Once you're finished accessing the device over USB, the u-boot gadget may be stopped by hitting Ctrl-C at the APU serial console.

Flashing eMMC

Once the X410's eMMC is accessible over USB, it's possible to write the filesystem image using dd. You can obtain the latest filesystem image by running:

uhd_images_downloader -t sdimg -t x4xx

The output of this command will indicate where the downloaded image can be found.

Run:

sudo dd if=/path/to/usrp_x4xx_fs.sdimg of=/dev/sdX bs=1M

to flash the eMMC with this image (replacing /dev/sdX with the block device of the X410's eMMC as indicated by your kernel log).

When copying has completed, hit Ctrl-C on the U-boot prompt to terminate the mass storage mode. Then, power-cycle the device to load the new filesystem.

Booting X410 over JTAG

If the X410 is no longer able to boot from eMMC, it is possible to boot the device into u-boot over JTAG. This will allow the filesystem to be reflashed using the process described in USB Access to eMMC.

In order to boot the X410 over JTAG, you'll first need to have either the Xilinx SDK, or the freely available Vivado Lab Edition. The following steps require that one of these is installed and available in your environment.

For convenience, pre-compiled bootloader binaries are provided, along with a script to handle downloading these into the X410's memory and booting the device. These are included in the sdimg package with the name usrp_x4xx_recovery.zip, which can be downloaded using:

uhd_images_downloader -t sdimg -t x4xx

To boot the device over JTAG, first ensure the X410 is powered off, and that you have serial consoles open to both the SCU and the APU. Configure the device to boot over JTAG by running zynqmp bootmode jtag on the SCU console, and press the power button (or run the powerbtn command at the SCU console). At this point, the device is powered on and the APU is held in reset.

Run xsdb boot_u-boot.tcl in the directory where you've extracted the bootloader binaries. This will download the various binaries needed to boot the device into memory, and bring the APU out of reset. Once this script completes, you should see u-boot loading on the APU serial console. From here, you can follow the steps in USB Access to eMMC to reflash the eMMC.

After the eMMC has been flashed, run reboot at the SCU console to reset the device and return back to the default boot mode. A subsequent press of the power button will boot the device from the eMMC.

Using a USRP X4x0 from UHD

Like any other USRP, all X4x0 USRPs are controlled by the UHD software. To integrate a USRP X4x0 into your C++ application, you would generate a UHD device in the same way you would for any other USRP:

auto usrp = uhd::usrp::multi_usrp::make("type=x4xx");
static sptr make(const device_addr_t &dev_addr)

For a list of which arguments can be passed into make(), see Section Device Arguments.

Device Arguments

Key Description Example Value
addr IPv4 address of primary SFP+ port to connect to. addr=192.168.30.2
second_addr IPv4 address of secondary SFP+ port to connect to. second_addr=192.168.40.2
mgmt_addr IPv4 address or hostname to which to connect the RPC client. Defaults to ‘addr’. mgmt_addr=ni-x4xx-311FE00
find_all When using broadcast, find all devices, even if unreachable via CHDR. find_all=1
master_clock_rate Master Clock Rate in Hz. master_clock_rate=250e6
serialize_init Force serial initialization of motherboards (default is parallel) serialize_init=1
skip_init Skip the initialization process for the device. skip_init=1
time_source Specify the time (PPS) source. time_source=internal
clock_source Specify the reference clock source. clock_source=internal
ref_clk_freq Specify the external reference clock frequency, default is 10 MHz. ref_clk_freq=20e6
discovery_port Override default value for MPM discovery port. discovery_port=49700
rpc_port Override default value for MPM RPC port. rpc_port=49701

GPS

The USRP X410 includes a Jackson Labs LTE-Lite GPS module. Its antenna port is on the rear panel (see Front and Back Panels). When the X410 has access to GPS satellite signals, it can use this module to read out the current GPS time and location as well as to discipline an onboard OCXO.

To use the GPS as a clock and time reference, simply use gpsdo as a clock or time source. Alternatively, set gpsdo as a synchronization source:

// Set clock/time individually:
usrp->set_clock_source("gpsdo");
usrp->set_time_source("gpsdo");
// This is equivalent to the previous commands, but faster, as it sets
// both settings simultaneously and avoids duplicating settings that are shared
// between these calls.
usrp->set_sync_source("clock_source=gpsdo,time_source=gpsdo");

Note the GPS module is not always enabled. Its power-on status can be queried using the gps_enabled GPS sensor (see also The Sensor API). When disabled, none of the sensors will return useful (if any) values.

When selecting gpsdo as a clock source, the GPS will always be enabled. Note that acquiring a GPS lock can take some time after enabling the GPS, so if a UHD application is enabling the GPS dynamically, it might take some time before a GPS lock is reported.

Front-Panel Programmable GPIOs

The USRP X410 has two HDMI front-panel connectors, which are connected to the FPGA. For a description of the GPIO control API, see X4x0 GPIO API.

There are multiple sources that can control the state of the GPIO lines. UHD has the capability of controlling which source each pin is driven from. The source control block is located in the X4x0 core logic block in the FPGA, and is also accessible via MPM. There are also local registers in the source control block that control the state of GPIOs manually if none of the additionally supported control schemes are required.

Source selection is performed via an array of muxes, each accessible via an independent register. The diagram below indicates the arrangement of muxes controlling GPIO source selection.

X4x0 GPIO Source Control

UHD has access to all radio-controlled blocks. In the diagram above, this includes one ATR DIO control block and one digital interface block for each radio.

When ATR control is selected as the source, it uses the Daughterboard state to determine the behavior of the GPIOs. The Daughterboard state is the concatenation of the transmission state of all channels in the daughterboard.

The Digital Interface Block currently supports a variable rate SPI bus. Having one of these blocks for each radio grants the ability to have two SPI engines running simultaneously. Each engine has the ability to service multiple slaves, but transactions can only be issued to one slave at a time. Slaves are customizable, and clock rate, instruction length, edge polarity are accommodated for based on the currently selected slave. Mapping of SPI signals to DIO port pins is also customizable. See The x4x0 SPI Mode.

Mapping from any source to the front-panel connectors is performed in a per-pin basis, allowing the user to interact with each connector pin from any radio.

Subdev Specifications

The RF ports on the front panel of the X410 + ZBX correspond to the following subdev specifications:

Label Subdev Spec
DB 0 / RF 0 A:0
DB 0 / RF 1 A:1
DB 1 / RF 0 B:0
DB 1 / RF 1 B:1

The subdev spec slot identifiers "A" and "B" are not reflected on the front panel. They were set to match valid subdev specifications of previous USRPs, maintaining backward compatibility.

These values can be used for uhd::usrp::multi_usrp::set_rx_subdev_spec() and uhd::usrp::multi_usrp::set_tx_subdev_spec() as with other USRPs.

The Sensor API

Like other USRPs, the X4x0 series have daughterboard and motherboard sensors. For daughterboard sensors, cf. Sensors.

When using uhd::usrp::multi_usrp, the following API calls are relevant to interact with the motherboard sensor API:

The following motherboard sensors are always available:

  • ref_locked: This will check that all the daughterboards have locked to the external reference.
  • temp_fpga: The temperature of the RFSoC die itself.
  • temp_main_power: The temperature of the PM-BUS devices which supply 0.85V to the RFSoC.
  • temp_scu_internal: The internal temperature reading of the STM32 microcontroller.
  • fan0: Fan 0 speed (RPM).
  • fan1: Fan 1 speed (RPM).

The GPS sensors will return empty values if the GPS is inactive (note it may be inactive when using a different clock than gpsdo, see also GPS). There are two types of GPS sensors. The first set requires an active GPS module and is acquired by calling into gpsd on the embedded device, which in turn communicates with the GPS via a serial interface. For this reason, these sensors can take a few seconds before returning a valid value:

  • gps_time: GPS time in seconds since the epoch.
  • gps_tpv: A TPV report from GPSd serialized as JSON.
  • gps_sky: A SKY report from GPSd serialized as JSON.
  • gps_gpgga: GPGGA string.

The seconds set of GPS sensors probes pins on the GPS module. They are all boolean sensors values. If the GPS is disabled, they will always return false.

  • gps_enabled: Returns true if the GPS module is powered on.
  • gps_locked: Returns the state of the 'LOCK_OK' pin.
  • gps_alarm: Returns the state of the 'ALARM' pin.
  • gps_warmed_up: Returns the state of the 'WARMUP_TRAINING' pin. Indicates warmup phase, can be high for minutes after enabling GPS.
  • gps_survey: Returns the state of the 'SURVEY_ACTIVE' pin. Indicates state of auto survey process. Indicates that module is locked to GPS, and that there are no events on the GPS module pending.

Rear Panel Status LEDs

The USRP X410 is equipped with four LEDs located on the device's rear panel. Each LED supports four different states: Off, Green, Red, and Amber. One LED (PWR) indicates the device's power state (see Power LED below). The other three LEDs (LED 0, LED 1, and LED 2) are user-configurable, different behaviors are supported for each of these LEDs (see User-configurable LEDs below).

X4x0 Rear Panel Status LEDs

Power LED

The USRP X410's PWR LED is reserved to visually indicate the user the device's power state. Power LED Behavior describes what each LED state represents.

Power LED Behavior

PWR LED State Meaning
Off No power is applied
Amber Power is good but X410 is powered off
Green Power is good and X410 is powered on
Red Power error state

User-configurable LEDs

The USRP X410's user-configurable rear panel status LEDs (LED 0, LED 1, and LED 2) allow the user to have visual indication of various device conditions. Supported LED Behaviors provides a complete list of the supported behaviors for each user-configurable LED. By default, these LEDs are configured as described in LEDs Default Behavior.

The user may alter the default LEDs behavior either temporarily or persistently, see Temporarily change the LED Behavior or Persistently change the LED Behavior accordingly.

Supported LED Behaviors

  • activity: flash green LED for CPU activity
  • emmc: flash green LED for eMMC activity
  • heartbeat: flash green LED with a heartbeat
  • fpga: change LED to green when FPGA is loaded
  • netdev <interface>: green LED indicates interface link, amber indicates activity
    • Where <interface> is the name of any network interface (e.g. eth0)
  • none: LED is constantly off
  • panic: red LED turns on when kernel panics
  • user0: off, green, red or amber LED state is controlled by FPGA application, see Using FPGA LED Control
  • user1: off, green, red or amber LED state is controlled by FPGA application, see Using FPGA LED Control
  • user2: off, green, red or amber LED state is controlled by FPGA application, see Using FPGA LED Control

LEDs Default Behavior

LED Number Default Behavior
LED 0 heartbeat
LED 1 fpga
LED 2 emmc

A user may change the X410 LEDs' default behavior via running a utility on the on-board ARM processor (Linux).

Temporarily change the LED Behavior

  1. Establish a connection (serial or SSH) to the X410's Linux terminal.
  2. Use the ledctrl utility to configure each LED based on desired supported behavior:
     ledctrl <led> <command>
    
    Where <led> valid options are: led0, led1, and led2. These options correspond to the rear panel labels. The <command> valid options are listed in the Supported LED Behaviors section above, with their corresponding description.

Example:

root@ni-x4xx-1111111:~# ledctrl led0 user0

Sets the X410's LED 0 to be controlled via the FPGA application using "User LED 0".

Persistently change the LED Behavior

The above method will not persist across reboots. In order to persist the changes, modify the ledctrl service unit files which are run by the init system at boot. These files can be found on a running filesystem at, e.g., /lib/systemd/system/ledctrl-led0.service.

Using FPGA LED Control

When selecting user0, user1, and/or user2 as LED behavior (see Supported LED Behaviors above), the FPGA application gains control of that given LED. The following paragraph describes how the FPGA application can control the state for each setting.

FPGA application access to User LED 0-2 requires modification of the FPGA source code and is achieved directly via Verilog, using a 2-bit vector to control the state.

Below is an excerpt of the FPGA source code, setting the user0, user1, and user2 values to green, red, and amber respectively.

// Rear panel LEDs control
// Each LED is comprised of a green (LSB) and a red (MSB) LED
// which the user can control through a 2-bit vector once fabric
// LED control is configured on the X410's Linux shell.
localparam LED_OFF = 2'b00;
localparam LED_GREEN = 2'b01;
localparam LED_RED = 2'b10;
localparam LED_AMBER = 2'b11;
wire [1:0] user_led_ctrl [0:2];
assign user_led_ctrl[0] = LED_GREEN;
assign user_led_ctrl[1] = LED_RED;
assign user_led_ctrl[2] = LED_AMBER;

Theory of Operation

X4x0 Motherboard Block Diagram

The USRP X410 has three processors on the motherboard: The RFSoC, the SCU, and a control CPLD. The RFSoC does the bulk of the work. It houses the programmable logic (PL), the APU and RPU processors (the former running the embedded Linux system), connects to the data ports (RJ45, QSFP28) and also includes RF data converters (ADC/DAC) which are exposed to the daughterboards through a connector. The FPGA configuration for the RFSoC can be found in the source code repository under fpga/usrp3/top/x400. The OpenEmbedded Linux configuration can be found on a separate repository.

The SCU is a microcontroller running a baremetal control stack. It controls the power sequencing, the fan speeds, connects various peripherals and sensors to the Linux kernel, and performs other low-level tasks. It can be accessed through a serial console directly from the back-panel. This can be a useful debugging tool if the device is not responding to other inputs, and can be used to power-cycle and reboot the USRP. It is connected to the RFSoC using an I2C interface.

The motherboard control CPLD performs various control tasks, such as controlling the clocking card and the GPIO connectors (note that the GPIO pins are also available without using the CPLD, which is the normal case when programming the pins for an application with higher rates and precise timing). The motherboard CPLD is accessible from the RFSoC through a SPI interface, and also acts as a SPI mux for accessing peripherals such as the clocking card. Access to the motherboard CPLD from within a UHD session always goes through MPM, meaning it is not used for high-speed or high-precision control. Its source code can be found in the UHD source code repository under fpga/usrp3/top/x400/cpld.

The RJ45 Ethernet connector is connected directly to the PS and is made available in Linux as a regular Ethernet interface. It is possible to stream data to and from the FPGA, but the data is tunneled through the operating system, which makes it a relatively slow interface. The QSFP28 connectors are directly connected to the RFSoC transceivers. Different FPGA images configure these either as 10 GbE or 100 GbE interfaces. It is possible to access the PS through these interfaces (when configured as Ethernet interfaces), but their main purpose is to stream data from and to the FPGA at high rates.

Clocking

The clocking architecture of the motherboard is spread out between a clocking auxiliary board, which contains an OCXO (either GPS-disciplined or controlled by a DAC), but also connects an external reference to the motherboard. Furthermore, it houses a PLL for deriving a clock from the network (eCPRI).

The motherboard itself has two main PLLs for clocking purposes: The Sample PLL (also SPLL) is used to create all clocks used for RF-related purposes. It creates the sample clock (a very fast clock, ~3 GHz) and the PLL reference clock (PRC) which is used as a reference for the LO synthesizers (50-64 MHz).

Its input is called the base reference clock (BRC). It has four possible sources:

  • The OCXO, which always produces a 10 MHz reference clock. When the clock source is set to internal, this OCXO is only disciplined by a DAC (control of that DAC is not exposed in this version of UHD), but there is no further control loop. By selecting gpsdo as a clock source, a GPS module is used to discipline the OCXO (see also GPS).
  • The external reference input SMA port. When an external reference is used (by selecting external as the clock source), the X410 assumes a 10 MHz reference clock (it is possible to drive the device with a different external clock frequency by providing the ref_clk_freq device argument, but this is not a supported use case for this UHD version). Note the clocking card can also import a PPS signal (when setting the time source to external) as well as export it.
  • The eCPRI PLL (when using the nsync clock source). It will generate a 10 MHz BRC. Note the intention is to use this for scenarios where the clock is derived from the network port (e.g., eCPRI), but this version of UHD does not include such a feature.
  • The reference PLL, when the clock source is set to mboard (this is a 25 MHz BRC). This is not a common use case, as it is not possible to synchronize the on-board clock. This is the only clock that does not come from the auxiliary clocking board.

The reference PLL (RPLL) produces clocks that are consumed by the GTY banks (for Ethernet), as well as the on-board BRC. By default, its reference is a fixed 100 MHz clock, but it can also be driven by the eCPRI PLL.

The eCPRI PLL is typically driven by a clock derived from the GTY banks, which is the assumption if the clock source is set to 'nsync'. The eCPRI PLL can also be driven from the RFSoC ("fabric clock") for testing purposes.

The master clock rate (MCR) depends on the sample clock rate. It also depends on the RFDC settings, which are different for different flavours of FPGA images (see also FPGA Image Flavors). The actual clock running at this frequency is generated digitally, within the RFSoC, and is derived from the SPLL clock.

Block diagram:

┌────────────────────────────────────────────────────────┐
│ Clocking Aux Board │
│ ┌──────┐ ┌───────┐ ┌────────┐ │
│ │GPSDO │ │ DAC │ │External│ │
│ └─────┬┘ └─┬─────┘ └───┬────┘ │
│ ┌v────v┐ │ ┌──────┐ │
│ │ OCXO │ │ │ <───────┼──┐
│ └──┬───┘ │ ┌───┐ │ MUX <───────┼─┐│
│ │ │ │ │ └──┬───┘ │ ││
│ ┌────v──────────────v───v─┐ │ ┌───────v───┐ │ ││
│ │ │ └─┤eCPRI PLL │ │ ││
│ └┐ MUX ┌┘ │LMK05318 │ │ ││
│ └─┐ ┌─┘ │ │ │ ││
│ └─┬─────────────────┘ └──┬────────┘ │ ││
│ │ │ │ ││
└───────────┼───────────────────────────┼────────────────┘ ││
│ │ ││
│ ┌─────────────┐ │ ││
┌──v──v┐ │ │ ││
│ MUX │ │ │ ┌───── 100 MHz ││
└──┬───┘ │ │ │ ││
│Base Ref. Clock │ │ │ ││
┌───────v───────┐ │ ┌───────v──v──┐ ││
│ Sample PLL │ └──┤Reference PLL│ ││
│ LMK04832 │ │LMK03328 │ ││
└──┬─────────┬──┘ └────┬────────┘ │└─ PL/Fabric Clock
│ │ │ │
v v v │
Sample PLL Reference GTY Banks GTY Recovered
Clock Clock Clock

Note that this section does not cover every single clock signal present on the X410, but mainly those clock signals relevant for the operation of the RF components. Refer to the schematic for more details.